

Summary

Jingyang is a Ph.D. candidate at Duke ECE with 5+ years of experience in designing advanced and robust training algorithms for **machine learning-based vision models**. His research spans **adversarial robustness**, **out-of-distribution detection**, and using **synthetic data** for better model evaluation and training. He combines 1) outstanding research capabilities, with publications in top-tier ML conferences, and 2) strong engineering skills, demonstrated through open-source implementations of ML models and algorithms.

Education

Duke University (Durham, NC)

Ph.D. student, Dept. of Electrical and Computer Engineering

Tsinghua University (Beijing, China)

B.Eng., Dept. of Electronic Engineering

Aug 2019 - Apr 2024

Sep 2015 - Jul 2019

GPA: 3.96/4.0

Selected Projects

Adversarially Robust Ensemble Generation

- Proposed DVERGE, a novel ensemble training methodology for Deep Neural Networks (DNNs) that diversifies the learnt features of sub-models. With little degradation in clean accuracy, DVERGE was once the state-of-the-art ensemble-based defense against black-box transfer attacks.
- Supported by DARPA QED-RML program and was accepted by NeurIPS'20 (oral). [Paper][Code]

Fine-Grained Out-of-Distribution Detection

- Proposed MixOE, a new DNN training algorithm that leads to 4%-13% improvement in true negative rate in large-scale, fine-grained OOD detection.
- Supported by AFRL and was accepted by WACV'23. [Paper][Code]

Large-Scale Benchmark for Out-of-Distribution Detection

- Built OpenOOD v1.5, a large-scale, enhanced benchmark and test platform for OOD detection in the context of image classification. OpenOOD comprehensively evaluated existing methodologies and identified remaining challenges and future directions for the field.
- A well-recognized project that receives *600+* stars; accepted by <u>NeurIPS'23 DistShift workshop (oral)</u>. [Paper][Code][Leaderboard]

Generating Natural Adversarial Examples with Stable Diffusion

- Developed an optimization technique that perturbs the conditional token embedding of Stable Diffusion to generate natural adversarial examples that deceive image classifiers.
- Accepted by ICLR'24 Tiny Paper track. [Paper][Code]

Internship Experience

Machine Learning Research Intern @ Bosch Center for AI

Jun 2022 - Dec 2022

- Was developing a "universal" adversarial defense that is robust to both ℓ_p (digital) and patch (physical) adversarial attacks against images. Demonstrated the effectiveness and potential of the defense through extensive experiments, which resulted in a patent.

o Machine Learning Intern @ Tesla

Jun 2023 - Sep 2023

- Implemented and adapted state-of-the-art deep learning models for trajectory prediction. Showed the efficacy of this method over baselines with proof-of-concept experiments in different scenarios.

Technical Skills

Programming Languages: Python, C++, Matlab.
Deep Learning Frameworks: PyTorch, TensorFlow.